Lemmata for Euler's Third Substitution/Lemma 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let Euler's third substitution be employed in order to evaluate a primitive of the form:

$\ds \map R {x, \sqrt {a x^2 + b x + c} } \rd x$

where $R$ is a rational function of $x$ and $\sqrt {a x^2 + b x + c}$.

Thus:

$\ds \sqrt {a x^2 + b x + c} = \sqrt {a \paren {x - \alpha} \paren {x - \beta} } = \paren {x - \alpha} t$


Then we have:

$x = \dfrac {a \beta - \alpha t^2} {a - t^2}$


Proof

\(\ds \sqrt {a x^2 + b x + c}\) \(=\) \(\ds \sqrt {a \paren {x - \alpha} \paren {x - \beta} }\)
\(\ds \) \(=\) \(\ds \paren {x - \alpha} t\) by hypothesis
\(\ds \leadsto \ \ \) \(\ds a \paren {x - \alpha} \paren {x - \beta}\) \(=\) \(\ds \paren {x - \alpha}^2 t^2\) squaring both sides
\(\ds \leadsto \ \ \) \(\ds a \paren {x - \beta}\) \(=\) \(\ds \paren {x - \alpha} t^2\) simplifying
\(\ds \leadsto \ \ \) \(\ds a x - a \beta\) \(=\) \(\ds x t^2 - \alpha t^2\) multiplying out
\(\ds \leadsto \ \ \) \(\ds x \paren {a - t^2}\) \(=\) \(\ds a \beta - \alpha t^2\) rearranging
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds \dfrac {a \beta - \alpha t^2} {a - t^2}\) rearranging

$\blacksquare$


Also see