Lie Algebra is Anticommutative

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $L$ be a Lie algebra.

Then $L$ is anticommutative:

$\forall a, b \in L: \sqbrk {a, b} = -\sqbrk {b, a}$

where $\sqbrk {\, \cdot, \cdot \,}$ denotes the bilinear mapping over $L$.


Proof

\(\ds \sqbrk {a + b, a + b}\) \(=\) \(\ds \sqbrk {a, a + b} + \sqbrk {b, a + b}\) Definition of Bilinear Mapping
\(\ds \leadsto \ \ \) \(\ds \sqbrk {a + b, a + b}\) \(=\) \(\ds \sqbrk {a, a} + \sqbrk {a, b} + \sqbrk{b, a} + \sqbrk {b, b}\) Definition of Bilinear Mapping
\(\ds \leadsto \ \ \) \(\ds 0\) \(=\) \(\ds \sqbrk {a, b} + \sqbrk {b, a}\) Lie Algebra Axiom $\text L 1$: Alternativity
\(\ds \leadsto \ \ \) \(\ds \sqbrk {a, b}\) \(=\) \(\ds -\sqbrk {b, a}\)

$\blacksquare$


Notes



The converse, that in a bilinear context anticommutativity implies $[x,x]=0$, is not quite true; however, the only exceptions occur when the vector space underlying the Lie algebra are over a field of characteristic 2.