Limit Inferior of Repetition Net

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $L = \struct {S, \wedge, \preceq}$ be a meet semilattice.

Let $N = \struct {\N, \le}$ be a directed ordered set.

Let $a, b \in S$.

Let $f = \sequence {c_i}_{i \mathop \in \N} = \tuple {a, b, a, b, \dots}: \N \to S$ be a net.


Then $\liminf \sequence {c_i}_{i \mathop \in \N} = a \wedge b$


Proof



We will prove that

(lemma): $\forall j \in \N: f \sqbrk {\le \paren j} = \set {a, b}$

Let $j \in \N$.

Let $x \in S$.

Assume:

$x \in f \sqbrk {\le \paren j}$

By definition of image of set:

$\exists i \in \le \paren j: x = \map f i$

By definition of $f$:

$x = a$ or $x = b$

Thus by definition of unordered tuple:

$x \in \set {a, b}$

$\Box$


Assume:

$x \in \set {a, b}$

We have:

$j \le j$ and $j \le j+1$

By definition of image of element:

$j, j + 1 \in \le \paren j$

By definition of $f$:

$\set {\map f j, \map f {j + 1} } = \set {a, b}$

By definition of image of set:

$\map f j, \map f {j + 1} \in f \sqbrk {\le \paren j}$

Thus by definition of unordered tuple: $x \in f \sqbrk {\le \paren j}$

$\Box$

Thus by definition of set equality:

$f \sqbrk {\le \paren j} = \set {a, b}$

$\Box$


Thus:

\(\ds \liminf \sequence {c_i}_{i \mathop \in \N}\) \(=\) \(\ds \sup \set {\map \inf {f \sqbrk {\mathord \le \paren j} }: j \in \N}\) Definition of Limit Inferior of Net
\(\ds \) \(=\) \(\ds \sup \set {\inf \set {a, b}: j \in \N}\) (lemma)
\(\ds \) \(=\) \(\ds \sup \set {a \wedge b: j \in \N}\) Definition of meet
\(\ds \) \(=\) \(\ds a \wedge b\) Supremum of Singleton

$\blacksquare$


Sources