Machin's Formula for Pi/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\dfrac \pi 4 = 4 \arctan \dfrac 1 5 - \arctan \dfrac 1 {239} \approx 0 \cdotp 78539 \, 81633 \, 9744 \ldots$


The calculation of $\pi$ (pi) can then proceed using the Gregory Series:

$\arctan \dfrac 1 x = \dfrac 1 x - \dfrac 1 {3 x^3} + \dfrac 1 {5 x^5} - \dfrac 1 {7 x^7} + \dfrac 1 {9 x^9} - \cdots$

which is valid for $x \ge 1$.


Proof

Let $\tan \alpha = \dfrac 1 5$.

Then:

\(\ds \tan 2 \alpha\) \(=\) \(\ds \frac {2 \tan \alpha} {1 - \tan^2 \alpha}\) Double Angle Formula for Tangent
\(\ds \) \(=\) \(\ds \frac {2 / 5} {1 - 1 / 25}\)
\(\ds \) \(=\) \(\ds \frac 5 {12}\)
\(\ds \leadsto \ \ \) \(\ds \tan 4 \alpha\) \(=\) \(\ds \frac {2 \tan 2 \alpha} {1 - \tan^2 2 \alpha}\) Double Angle Formula for Tangent
\(\ds \) \(=\) \(\ds \frac {2 \times 5 / 12} {1 - 25 / 144}\)
\(\ds \) \(=\) \(\ds \frac {120} {119}\)
\(\ds \leadsto \ \ \) \(\ds \tan \left({4 \alpha - \frac \pi 4}\right)\) \(=\) \(\ds \frac {\tan 4 \alpha - \tan \frac \pi 4} {1 + \tan 4 \alpha \tan \frac \pi 4}\) Tangent of Difference
\(\ds \) \(=\) \(\ds \frac {\tan 4 \alpha - 1} {1 + \tan 4 \alpha}\) Tangent of $45^\circ$
\(\ds \) \(=\) \(\ds \frac {120 / 119 - 1} {120 / 119 + 1}\)
\(\ds \) \(=\) \(\ds \frac 1 {239}\)
\(\ds \leadsto \ \ \) \(\ds 4 \alpha - \frac \pi 4\) \(=\) \(\ds \arctan \frac 1 {239}\)
\(\ds \leadsto \ \ \) \(\ds \frac \pi 4\) \(=\) \(\ds 4 \arctan \frac 1 5 - \arctan \frac 1 {239}\)

$\blacksquare$


Source of Name

This entry was named for John Machin.

Historical Note

John Machin devised his formula for $\pi$ in $1706$.

It allowed him to calculate $\pi$ to over $100$ decimal places.

This greatly surpassed the work of Ludolph van Ceulen.