Median Formula/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\triangle ABC$ be a triangle.

Let $CD$ be the median of $\triangle ABC$ which bisects $AB$.

MedianOfTriangle.png

The length $m_c$ of $CD$ is given by:

${m_c}^2 = \dfrac {a^2 + b^2} 2 - \dfrac {c^2} 4$


Proof

\(\ds a^2 \cdot AD + b^2 \cdot DB\) \(=\) \(\ds CD^2 \cdot c + AD \cdot DB \cdot c\) Stewart's Theorem
\(\ds \leadsto \ \ \) \(\ds a^2 \frac c 2 + b^2 \frac c 2\) \(=\) \(\ds {m_c}^2 \cdot c + \paren {\frac c 2}^2 c\) substituting $AD = DB = \dfrac c 2$ and $CD = m_c$
\(\ds \leadsto \ \ \) \(\ds \frac c 2 \paren {a^2 + b^2}\) \(=\) \(\ds m_c^2 \cdot c + \frac {c^2} 4 \cdot c\)
\(\ds \leadsto \ \ \) \(\ds \frac {a^2 + b^2} 2\) \(=\) \(\ds m_c^2 + \frac {c^2} 4\)
\(\ds \leadsto \ \ \) \(\ds {m_c}^2\) \(=\) \(\ds \frac {a^2 + b^2} 2 - \frac {c^2} 4\) after algebra

$\blacksquare$