Median of Logistic Distribution

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X$ be a continuous random variable with a logistic distribution:

$\map {f_X} x = \dfrac {\map \exp {-\dfrac {\paren {x - \mu} } s} } {s \paren {1 + \map \exp {-\dfrac {\paren {x - \mu} } s} }^2}$

for $\mu \in \R, s \in \R_{>0}$.

The median of $X$ is $\mu$.


Proof

From the definition of the logistic distribution, $X$ has probability density function:

$\map {f_X} x = \dfrac {\map \exp {-\dfrac {\paren {x - \mu} } s} } {s \paren {1 + \map \exp {-\dfrac {\paren {x - \mu} } s} }^2}$

Note that $f_X$ is non-zero, sufficient to ensure a unique median.



By the definition of a median, to prove that $\mu$ is the median of $X$ we must verify:

$\ds \map \Pr {X < \mu} = \int_{-\infty}^\mu \map {f_X} x \rd x = \frac 1 2$


We have:

\(\ds \int_{-\infty}^\mu \map {f_X} x \rd x\) \(=\) \(\ds \frac 1 s \int_{-\infty}^\mu \dfrac {\map \exp {-\dfrac {\paren {x - \mu} } s} } {\paren {1 + \map \exp {-\dfrac {\paren {x - \mu} } s} }^2} \rd x\)


Let:

\(\ds u\) \(=\) \(\ds \paren {1 + \map \exp {-\dfrac {\paren {x - \mu} } s} }^{-1}\) Integration by Substitution
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds -\paren {1 + \map \exp {-\dfrac {\paren {x - \mu} } s} }^{-2} \paren {-\frac 1 s \map \exp {-\dfrac {\paren {x - \mu} } s} }\) Power Rule for Derivatives, Chain Rule for Derivatives and Derivative of Exponential Function: Corollary $1$


and also:

\(\ds \lim_{x \mathop \to -\infty} \paren {1 + \map \exp {-\dfrac {\paren {x - \mu} } s} }^{-1}\) \(=\) \(\ds 0\)
\(\ds \lim_{x \mathop \to \mu} \paren {1 + \map \exp {-\dfrac {\paren {x - \mu} } s} }^{-1}\) \(=\) \(\ds \dfrac 1 2\)


Then:

\(\ds \) \(=\) \(\ds \int_0^{\frac 1 2} \rd u\)
\(\ds \) \(=\) \(\ds \bigintlimits u 0 {\frac 1 2}\) Integral of Constant
\(\ds \) \(=\) \(\ds \frac 1 2\)

$\blacksquare$