Membership of Set of Integers is Replicative Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $f: \R \to \R$ be the real function defined as:

$\forall x \in \R: \map f x = \sqbrk {x \in \Z}$

where $\sqbrk {\cdots}$ is Iverson's convention.


Then $f$ is a replicative function.


Proof

First note that the interval between $x$ and $x + \dfrac {n - 1} n$ is less than $1$.

Thus there can be no more than one $k$ such that $0 \le k < n$ such that:

$x + \dfrac k n \in \Z$

Hence:

$\ds \sum_{k \mathop = 0}^{n - 1} \sqbrk {x + \frac k n \in \Z} \le 1$


First let:

$\ds \sum_{k \mathop = 0}^{n - 1} \sqbrk {x + \frac k n \in \Z} = 1$

Then:

\(\ds x + \frac k n\) \(\in\) \(\ds \Z\)
\(\ds \leadsto \ \ \) \(\ds n \paren {x + \frac k n}\) \(\in\) \(\ds \Z\)
\(\ds \leadsto \ \ \) \(\ds n x + k\) \(\in\) \(\ds \Z\)
\(\ds \leadsto \ \ \) \(\ds n x\) \(\in\) \(\ds \Z\)
\(\ds \leadsto \ \ \) \(\ds \sqbrk {n x \in \Z}\) \(=\) \(\ds 1\)

$\Box$


Let:

$\ds \sum_{k \mathop = 0}^{n - 1} \sqbrk {x + \frac k n \in \Z} = 0$

Aiming for a contradiction, suppose $\sqbrk {n x \in \Z} = 1$.

Then:

\(\ds n x\) \(\in\) \(\ds \Z\)
\(\ds \leadsto \ \ \) \(\ds \forall k \in \Z: \, \) \(\ds n x + k\) \(\in\) \(\ds \Z\)

But at least one $n x + k$ such that $0 \le k < n$ is a multiple of $n$.

Hence:

$\exists k \in \Z: 0 \le k < n: \sqbrk {x + \dfrac k n \in \Z} = 1$

So:

$\ds \sum_{k \mathop = 0}^{n - 1} \sqbrk {x + \frac k n \in \Z} = 1$

which contradicts the supposition that $\sqbrk {n x \in \Z} = 1$.


Hence the result by definition of replicative function.

$\blacksquare$


Sources