Minimal Arithmetic is Sigma 1 Complete

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\phi$ be a $\Sigma_1$ sentence in the language of arithmetic.

Suppose $\N \models \phi$.

Then $\phi$ is a theorem in minimal arithmetic.


Proof

By definition of $\Sigma_1$, $\phi$ is logically equivalent to:

$Q_1 Q_2 \dotsm Q_k \map \psi {x_1, x_2, \dotsc, x_k}$

where $\psi$ is a WFF with no quantifiers.

Proceed by induction on the number of quantifiers in the formula.


Basis for the Induction

Let $x_1, x_2, \dotsc, x_k \in \N$ be natural numbers.

Let $\sqbrk x$ denote the unary representation of $x$.

By Quantifier-Free Formula of Arithmetic is Provable:

$\map \psi {x_1 \gets \sqbrk {x_1}, x_2 \gets \sqbrk {x_2}, \dotsc, x_k \gets \sqbrk {x_k} }$

is a theorem whenever $\N \models \map \psi {\dots}$.


Induction Hypothesis

Let $\psi$ be a WFF with $n$ quantifiers and $k - n$ free variables.

Suppose that, for every $x_1, x_2, \dotsc, x_{k - n} \in \N$ such that:

$\N \models \map \psi {x_1 \gets \sqbrk {x_1}, x_2 \gets \sqbrk {x_2}, \dotsc, x_{k - n} \gets \sqbrk {x_{k - n} } }$

it follows that:

$\map \psi {x_1 \gets \sqbrk {x_1} \dotsc, x_{k - n} \gets \sqbrk {x_{k - n} } }$

is a theorem.


Induction Step

Suppose the $k - n$-th quantifier is existential.

The step follows from Existential Quantification of Provable Arithmetic Formula is Provable.


Suppose instead that the $k - n$th quantifier is bounded universal.

The step follows from Bounded Universal Quantification of Provable Arithmetic Formula is Provable.

$\Box$


By Principle of Mathematical Induction, the statement holds in particular for $n = k$.

That is, when there are no free variables, and every quantifier has been considered.

$\blacksquare$