Napier's Analogies/Also presented as

From ProofWiki
Jump to navigation Jump to search

Napier's Analogies

Napier's Analogies can also be seen presented as:

\(\text {(1)}: \quad\) \(\ds \dfrac {\tan \frac {a + b} 2} {\tan \frac c 2}\) \(=\) \(\ds \dfrac {\cos \frac {A - B} 2} {\cos \frac {A + B} 2}\)
\(\text {(2)}: \quad\) \(\ds \dfrac {\tan \frac {a - b} 2} {\tan \frac c 2}\) \(=\) \(\ds \dfrac {\sin \frac {A - B} 2} {\sin \frac {A + B} 2}\)
\(\text {(3)}: \quad\) \(\ds \dfrac {\tan \frac {A + B} 2} {\cot \frac C 2}\) \(=\) \(\ds \dfrac {\cos \frac {a - b} 2} {\cos \frac {a + b} 2}\)
\(\text {(4)}: \quad\) \(\ds \dfrac {\tan \frac {A - B} 2} {\cot \frac C 2}\) \(=\) \(\ds \dfrac {\sin \frac {a - b} 2} {\sin \frac {a + b} 2}\)


It is supposed that they could also be presented as:

\(\text {(1)}: \quad\) \(\ds \tan \frac {a + b} 2 \cos \frac {A + B} 2\) \(=\) \(\ds \cos \frac {A - B} 2 \tan \frac c 2\)
\(\text {(2)}: \quad\) \(\ds \tan \frac {a - b} 2 \sin \frac {A + B} 2\) \(=\) \(\ds \sin \frac {A - B} 2 \tan \frac c 2\)
\(\text {(3)}: \quad\) \(\ds \tan \frac {A + B} 2 \cos \frac {a + b} 2\) \(=\) \(\ds \cos \frac {a - b} 2 \cot \frac C 2\)
\(\text {(4)}: \quad\) \(\ds \tan \frac {A - B} 2 \sin \frac {a + b} 2\) \(=\) \(\ds \sin \frac {a - b} 2 \cot \frac C 2\)

but it has not been established that this appears anywhere in the literature.