Negated Restricted Universal Quantifier

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$ and $A$ be sets.

Let $\map P x$ be a propositional function.

$\neg \forall x \in A : \map P x \iff \exists x \in A : \neg \map P x $


Proof

Sufficient Condition

\(\ds \neg \forall x \in A: \, \) \(\ds \) \(\map P x\) \(\ds \)
\(\ds \leadsto \ \ \) \(\ds \neg \forall x: \, \) \(\ds \) \(x \in A \implies \map P x\) \(\ds \) Definition of Restricted Universal Quantifier
\(\ds \leadsto \ \ \) \(\ds \exists x: \, \) \(\ds \) \(\neg \paren{x \in A \implies \map P x}\) \(\ds \) De Morgan's Laws (Predicate Logic)/Denial of Universality
\(\ds \leadsto \ \ \) \(\ds \exists x: \, \) \(\ds \) \(x \in A \land \neg \map P x\) \(\ds \) Conjunction with Negative is Equivalent to Negation of Conditional
\(\ds \leadsto \ \ \) \(\ds \exists x \in A: \, \) \(\ds \) \(\neg \map P x\) \(\ds \) Definition of Restricted Existential Quantifier

$\Box$


Necessary Condition

\(\ds \exists x \in A: \, \) \(\ds \) \(\neg \map P x\) \(\ds \)
\(\ds \leadsto \ \ \) \(\ds \exists x: \, \) \(\ds \) \(x \in A \land \neg \map P x\) \(\ds \) Definition of Restricted Existential Quantifier
\(\ds \leadsto \ \ \) \(\ds \exists x: \, \) \(\ds \) \(\neg \paren{x \in A \to \map P x}\) \(\ds \) Conjunction with Negative is Equivalent to Negation of Conditional
\(\ds \leadsto \ \ \) \(\ds \neg \forall x: \, \) \(\ds \) \(x \in A \to \map P x\) \(\ds \) De Morgan's Laws (Predicate Logic)/Denial of Universality
\(\ds \leadsto \ \ \) \(\ds \neg \forall x \in A: \, \) \(\ds \) \(\map P x\) \(\ds \) Definition of Restricted Universal Quantifier

$\blacksquare$