Neumann Series Theorem

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X$ be a Banach space.

Let $\map {CL} X$ be the continous linear transformation space.

Let $\norm {\, \cdot \,}$ be the supremum operator norm.

Let $A \in \map {CL} X$ be such that $\norm A < 1$.

Let $\circ$ be the composition of mappings.

Let $I$ be the identity mapping.


Then:

$I - A$ is invertible in $\map {CL} X$
$\ds \paren {I - A}^{-1} = \sum_{n \mathop = 0}^\infty A^n$
$\norm {\paren{I - A}^{-1} } \le \dfrac 1 {1 - \norm A}$


Corollary 1

The mapping $I - A : X \to X$ is bijective.


Corollary 2

The mapping $\paren {I - A}^{-1} : X \to X$ is continuous.


Proof

Let $\ds S_k := \sum_{n \mathop = 0}^k A^n$.


$\ds \sum_{n \mathop = 0}^\infty A^n$ converges absolutely

By Supremum Operator Norm on Continuous Linear Transformation Space is Submultiplicative:

$\forall n \in \N : \norm {A^n} \le \norm A^n$

By assumption, $\norm A < 1$.

By Sum of Infinite Geometric Sequence, $\ds \sum_{n \mathop = 0}^\infty \norm A^n$ converges.

By series comparison, $\ds \sum_{n \mathop = 0}^\infty \norm {A^n}$ converges too.

By definition, $\ds \sum_{n \mathop = 0}^\infty A^n$ is absolutely convergent.

$\Box$


$\ds \sum_{n \mathop = 0}^\infty A^n$ converges

By assumption, $X$ is Banach.

By Necessary and Sufficient Conditions for Continuous Linear Transformation Space to be Banach Space, $\map {CL} X$ is Banach too.

Let $\ds S := \sum_{n \mathop = 0}^\infty A^n$.

We have that Absolutely Convergent Series in Normed Vector Space is Convergent iff Space is Banach.

Then $S$ converges in $\map {CL} X$.

In other words:

$\ds \lim_{k \mathop \to \infty} S_k = S$

$\Box$


Inverse of $\paren {I - A}$ is $S$

We have that:

\(\ds A S_k\) \(=\) \(\ds A \circ \paren{\sum_{n \mathop = 0}^k A^n}\)
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^k A^{n + 1}\)
\(\ds \) \(=\) \(\ds \paren {\sum_{n \mathop = 0}^k A^n} \circ A\)
\(\ds \) \(=\) \(\ds S_k A\)
\(\ds \) \(=\) \(\ds \sum_{n' \mathop = 1}^{k + 1} A^{n'}\) $n' = n + 1$
\(\ds \) \(=\) \(\ds S_{k + 1} - I\)

Furthermore:

\(\ds \norm {A S_k - A S}\) \(=\) \(\ds \norm {A \paren {S_k - S} }\)
\(\ds \) \(\le\) \(\ds \norm {A} \norm {S_k - S}\) Supremum Operator Norm on Continuous Linear Transformation Space is Submultiplicative
\(\ds \) \(\le\) \(\ds \norm {S_k - S}\)
\(\ds \leadsto \ \ \) \(\ds \lim_{k \mathop \to \infty} \norm {S_k A - S A}\) \(\le\) \(\ds \lim_{k \mathop \to \infty} \norm {S_k - S}\)
\(\ds \) \(=\) \(\ds \norm {\lim_{k \mathop \to \infty} \paren {S_k - S} }\) Supremum Norm is Norm, Norm is Continuous, Limit of Composite Function
\(\ds \) \(=\) \(\ds 0\)
\(\ds \norm {S_k A - S A}\) \(=\) \(\ds \norm {\paren {S_k - S} A}\)
\(\ds \) \(\le\) \(\ds \norm {A} \norm {S_k - S}\) Supremum Operator Norm on Continuous Linear Transformation Space is Submultiplicative
\(\ds \) \(\le\) \(\ds \norm {S_k - S}\)
\(\ds \leadsto \ \ \) \(\ds \lim_{k \mathop \to \infty} \norm {S_k A - S A}\) \(\le\) \(\ds \lim_{k \mathop \to \infty} \norm {S_k - S}\)
\(\ds \) \(=\) \(\ds \norm {\lim_{k \mathop \to \infty} \paren {S_k - S} }\) Supremum Norm is Norm, Norm is Continuous, Limit of Composite Function
\(\ds \) \(=\) \(\ds 0\)

Hence:

\(\ds \lim_{k \mathop \to \infty} S_k A\) \(=\) \(\ds S A\)
\(\ds \) \(=\) \(\ds \lim_{k \mathop \to \infty} A S_k\)
\(\ds \) \(=\) \(\ds A \lim_{k \mathop \to \infty} S_k\)
\(\ds \) \(=\) \(\ds A S\)
\(\ds \) \(=\) \(\ds \lim_{k \mathop \to \infty} \paren {S_{k+1} - I}\)
\(\ds \) \(=\) \(\ds S - I\)

That is:

$S A = A S = S - I$

It follows that:

\(\ds I\) \(=\) \(\ds S - S A\)
\(\ds \) \(=\) \(\ds S \paren {I - A}\)
\(\ds \) \(=\) \(\ds S - A S\)
\(\ds \) \(=\) \(\ds \paren {I - A} S\)

Therefore, $I - A$ is invertible in $\map {CL} X$.

Furthermore:

$\ds \paren {I - A}^{-1} = S = \sum_{k \mathop = 0}^\infty A^k$

Moreover:

\(\ds \norm {\paren {I - A}^{-1} }\) \(=\) \(\ds \norm {\sum_{k \mathop = 0}^\infty A^k}\)
\(\ds \) \(\le\) \(\ds \sum_{k \mathop = 0}^\infty \norm {A^k}\) Norm Axiom $\text N 3$: Triangle Inequality
\(\ds \) \(\le\) \(\ds \sum_{k \mathop = 0}^\infty \norm A^k\) Supremum Operator Norm on Continuous Linear Transformation Space is Submultiplicative
\(\ds \) \(\le\) \(\ds \frac 1 {1 - \norm A}\) Sum of Infinite Geometric Sequence

$\blacksquare$


Also see


Source of Name

This entry was named for Carl Gottfried Neumann.


Sources