Non-Equivalence as Conjunction of Disjunction with Disjunction of Negations/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\neg \paren {p \iff q} \dashv \vdash \paren {p \lor q} \land \paren {\neg p \lor \neg q}$


Proof

By the tableau method of natural deduction:

$\neg \paren {p \iff q} \vdash \paren {p \lor q} \land \paren {\neg p \lor \neg q} $
Line Pool Formula Rule Depends upon Notes
1 1 $\neg \paren {p \iff q}$ Premise (None)
2 1 $\paren {p \lor q} \land \neg \paren {p \land q}$ Sequent Introduction 1 Non-Equivalence as Conjunction of Disjunction with Negation of Conjunction
3 1 $\paren {p \lor q} \land \paren {\neg p \lor \neg q}$ Sequent Introduction 2 De Morgan's Laws: Disjunction of Negations


By the tableau method of natural deduction:

$\paren {p \lor q} \land \paren {\neg p \lor \neg q} \vdash \neg \paren {p \iff q} $
Line Pool Formula Rule Depends upon Notes
1 1 $\paren {p \lor q} \land \paren {\neg p \lor \neg q}$ Premise (None)
2 1 $\paren {p \lor q} \land \neg \paren {p \land q}$ Sequent Introduction 1 De Morgan's Laws: Disjunction of Negations
3 1 $\neg \paren {p \iff q}$ Sequent Introduction 2 Non-Equivalence as Conjunction of Disjunction with Negation of Conjunction

$\blacksquare$