Non-Negative Scalar Multiple of Seminorm on Vector Space is Seminorm

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\GF \in \set {\R, \C}$.

Let $X$ be a vector space over $\GF$.

Let $p$ be a seminorm on $X$.

Let $\alpha \in \R_{\ge 0}$.

Let $q = \alpha p$.


Then $q$ is a seminorm on $X$.


Proof

Seminorm Axiom $\text N 2$: Positive Homogeneity

Let $x \in X$ and $k \in \GF$.

We have:

\(\ds \map q {k x}\) \(=\) \(\ds \alpha \map p {k x}\)
\(\ds \) \(=\) \(\ds \alpha \cmod k \map p x\) Seminorm Axiom $\text N 2$: Positive Homogeneity for $p$
\(\ds \) \(=\) \(\ds \cmod k \map q x\)

$\Box$

Seminorm Axiom $\text N 3$: Triangle Inequality

Let $x, y \in X$.

Then we have:

\(\ds \map q {x + y}\) \(=\) \(\ds \alpha \map p {x + y}\)
\(\ds \) \(\le\) \(\ds \alpha \paren {\map p x + \map p y}\) Seminorm Axiom $\text N 3$: Triangle Inequality for $p$
\(\ds \) \(=\) \(\ds \alpha \map p x + \alpha \map p y\)
\(\ds \) \(=\) \(\ds \map q x + \map q y\)

$\blacksquare$