Partial Derivative/Examples/u^2 + v^2 = x^2, 2 u v = 2 x y + y^2/Lemma

From ProofWiki
Jump to navigation Jump to search

Lemma for Example: $u^2 + v^2 = x^2$, $2 u v = 2 x y + y^2$

Consider the simultaneous equations:

\(\ds u^2 + v^2\) \(=\) \(\ds x^2\)
\(\ds 2 u v\) \(=\) \(\ds 2 x y + y^2\)

Then:

$x = 1$, $y = -2$ is a solution at $u = 1$, $v = 0$.


Proof

We make sure that $\tuple {1, -2}$ is actually a solution at $u = 1$, $v = 0$:

\(\ds u^2 + v^2\) \(=\) \(\ds \paren {-1}^2 + 0^2\) at $u = 1$, $v = 0$
\(\ds \) \(=\) \(\ds x^2\) at $\tuple {1, -2}$


\(\ds 2 u v\) \(=\) \(\ds 2 \times \paren {-1} \times 0\) at $u = 1$, $v = 0$
\(\ds \) \(=\) \(\ds 2 \times 1 \times \paren {-2} + \paren {-2}^2\) at $\tuple {1, -2}$
\(\ds \) \(=\) \(\ds 2 x y + y^2\) at $\tuple {1, -2}$

and it is seen that this is the case.

$\blacksquare$


Sources