Pointwise Maximum of Finite Family of Seminorms is Seminorm

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {K, \norm {\,\cdot\,}_K}$ be a normed division ring.

Let $X$ be a vector space over $K$.

Let $\II$ be a set of seminorms on $X$.


Define:

$\ds q = \max_{p \mathop \in \II} p$

where $\max$ denotes the pointwise maximum over $\II$.


Proof

Proof of $(\text N 2)$

Let $\lambda \in K$ and $x \in X$.

Then:

\(\ds \map q {\lambda x}\) \(=\) \(\ds \max_{p \mathop \in \II} \map p {\lambda x}\)
\(\ds \) \(=\) \(\ds \max_{p \mathop \in \II} \norm \lambda_K \map p x\) $(\text N 2)$ in the definition of the seminorm
\(\ds \) \(=\) \(\ds \norm \lambda_K \max_{p \mathop \in \II} \map p x\)
\(\ds \) \(=\) \(\ds \norm \lambda_K \max_{p \mathop \in \II} \map p x\)

proving $(\text N 2)$.

$\Box$


Proof of $(\text N 3)$

Let $x, y \in X$.

Then for each $p \in \II$ we have:

\(\ds \map p {x + y}\) \(\le\) \(\ds \map p x + \map p y\) $(\text N 3)$ in the definition of the seminorm
\(\ds \) \(\le\) \(\ds \max_{p \mathop \in \II} \map p x + \max_{p \mathop \in \II} \map p y\) Definition of Pointwise Maximum of Real-Valued Functions
\(\ds \) \(=\) \(\ds \map q x + \map q y\)

Taking pointwise maximums over $p \in \II$ we have:

$\map q {x + y} \le \map q x + \map q y$

$\blacksquare$