Positive Part of Horizontal Section of Function is Horizontal Section of Positive Part

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X$ and $Y$ be sets.

Let $f : X \times Y \to \overline \R$ be a function.

Let $y \in Y$.


Then:

$\paren {f^y}^+ = \paren {f^+}^y$

where:

$f^y$ denotes the $y$-horizontal function of $f$
$f^+$ denotes the positive part of $f$.


Proof

Fix $y \in Y$.

Then, we have, for each $x \in X$:

\(\ds \map {\paren {f^+}^y} x\) \(=\) \(\ds \map {f^+} {x, y}\)
\(\ds \) \(=\) \(\ds \max \set {0, \map f {x, y} }\) Definition of Positive Part
\(\ds \) \(=\) \(\ds \max \set {0, \map {f^y} x}\) Definition of Horizontal Section of Function
\(\ds \) \(=\) \(\ds \map {\paren {f^y}^+} x\) Definition of Positive Part

$\blacksquare$