Primitive of Composite Function/Corollary

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $f$ and $g$ be a real functions which are integrable.

Let the composite function $g \circ f$ also be integrable.

Then:

\(\ds \int \map {\paren {g \circ f} } x \map {f'} x \rd x\) \(=\) \(\ds \int \map g u \rd u\)


where $u = \map f x$.


Proof

\(\ds \map F x\) \(=\) \(\ds \int \map {\paren {g \circ f} } x \map {f'} x \rd x\)
\(\ds \) \(=\) \(\ds \int \map g {\map f x} \map {f'} x \rd x\) Definition of Composition of Mappings
\(\ds \) \(=\) \(\ds \int \map g u \map {f'} x \rd x\) where $u = \map f x$
\(\ds \leadsto \ \ \) \(\ds \frac {\d F} {\d x}\) \(=\) \(\ds \map g u \map {f'} x\) Definition of Primitive (Calculus)
\(\ds \leadsto \ \ \) \(\ds \frac {\d F} {\d u} \frac {\d u} {\d x}\) \(=\) \(\ds \map g u \map {f'} x\) Chain Rule for Derivatives
\(\ds \leadsto \ \ \) \(\ds \frac {\d F} {\d u} \frac \d {\d x} \map f x\) \(=\) \(\ds \map g u \map {f'} x\) Definition of $u$
\(\ds \leadsto \ \ \) \(\ds \frac {\d F} {\d u} \map {f'} x\) \(=\) \(\ds \map g u \map {f'} x\) Definition of Derivative
\(\ds \leadsto \ \ \) \(\ds \frac {\d F} {\d u}\) \(=\) \(\ds \map g u\)
\(\ds \leadsto \ \ \) \(\ds F\) \(=\) \(\ds \int \map g u \rd u\) Definition of Primitive (Calculus)

$\blacksquare$