Primitive of Exponential of a x/Complex
Jump to navigation
Jump to search
Theorem
- $\ds \int e^{a x} \rd x = \frac {e^{a x} } a + C$
Proof for Complex Numbers
Let $z \in \C$ be a complex variable.
\(\ds \map {D_x} {\frac {e^{a z} } a}\) | \(=\) | \(\ds \map {D_x} {\frac 1 a \sum_{n \mathop = 0}^\infty \frac {\paren {a z}^n} {n!} }\) | Definition of Complex Exponential Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {D_x} {\frac 1 a \sum_{n \mathop = 0}^\infty \frac {a^n z^n} {n!} }\) | Exponent Combination Laws | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {D_x} {\sum_{n \mathop = 0}^\infty \frac {a^{n - 1} z^n} {n!} }\) | Summation is Linear: Scaling of Summations | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty n \frac {a^{n - 1} z^{n - 1} } {n!}\) | Derivative of Complex Power Series | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty n \frac {\paren {a z}^{n - 1} } {n!}\) | Exponent Combination Laws | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {a z}^{n - 1} } {\paren {n - 1}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {a z}^n} {n!}\) | Translation of Index Variable of Summation | |||||||||||
\(\ds \) | \(=\) | \(\ds e^{a z}\) | Definition of Complex Exponential Function |
The result follows by the definition of the primitive.
$\blacksquare$
![]() | This article, or a section of it, needs explaining. In particular: what about summation to infinity? You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by explaining it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Explain}} from the code. |