Primitive of Hyperbolic Cosecant Function/Logarithm Form

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \csch x \rd x = -\ln \size {\csch x + \coth x} + C$

where $\csch x + \coth x \ne 0$.


Proof

Let:

\(\ds u\) \(=\) \(\ds \coth x + \csch x\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds \frac \d {\d x} \coth x + \frac \d {\d x} \csch x\) Linear Combination of Derivatives
\(\ds \) \(=\) \(\ds -\csch^2 x + \frac \d {\d x} \csch x\) Derivative of Hyperbolic Cotangent
\(\ds \) \(=\) \(\ds -\csch^2 x - \csch x \coth x\) Derivative of Hyperbolic Cosecant
\(\ds \) \(=\) \(\ds -\csch x \paren {\csch x + \coth x}\) factorising


Then:

\(\ds \int \csch x \rd x\) \(=\) \(\ds \int \frac {\csch x \paren {\csch x + \coth x} } {\csch x + \coth x} \rd x\) multiplying top and bottom by $\csch x + \coth x$
\(\ds \) \(=\) \(\ds -\int \frac {-\csch x \paren {\csch x + \coth x} } {\csch x + \coth x} \rd x\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds -\ln \size {\csch x + \coth x} + C\) Primitive of Function under its Derivative

$\blacksquare$


Also see