Primitive of Hyperbolic Secant Function/Arctangent of Half Hyperbolic Tangent Form

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \sech x \rd x = 2 \map \arctan {\tanh \dfrac x 2} + C$


Proof

Let $u = \tanh \dfrac x 2$.

Then:

\(\ds \int \sech x \rd x\) \(=\) \(\ds \int \frac {1 - u^2} {1 + u^2} \frac {2 \rd u} {1 - u^2}\) Hyperbolic Tangent Half-Angle Substitution
\(\ds \) \(=\) \(\ds \int \frac {2 \rd u} {1 + u^2}\) simplifying
\(\ds \) \(=\) \(\ds 2 \arctan u + C\) Primitive of $\dfrac 1 {x^2 + a^2}$: Arctangent Form
\(\ds \) \(=\) \(\ds 2 \map \arctan {\tanh \dfrac x 2} + C\) substituting for $u$

$\blacksquare$


Sources