Primitive of Inverse Hyperbolic Cosine of x over a over x squared/Corollary

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac 1 {x^2} \paren {-\cosh^{-1} \dfrac x a} \rd x = -\frac 1 x \paren {-\cosh^{-1} \dfrac x a} - \frac 1 a \arcsec \size {\frac x a} + C$

where $-\cosh^{-1}$ denotes the negative branch of the real inverse hyperbolic cosine multifunction.


Proof

\(\ds -\cosh^{-1} \frac x a\) \(=\) \(\ds -\arcosh \frac x a\) Definition of Real Inverse Hyperbolic Cosine
\(\ds \leadsto \ \ \) \(\ds \int \frac 1 {x^2} \paren {-\cosh^{-1} \dfrac x a} \rd x\) \(=\) \(\ds -\int \frac 1 {x^2} \arcosh \dfrac x a \rd x\)
\(\ds \) \(=\) \(\ds -\paren {-\frac 1 x \arcosh \dfrac x a + \frac 1 a \arcsec \size {\frac x a} + C}\) Primitive of $\frac 1 {x^2} \arcosh \dfrac x a$
\(\ds \) \(=\) \(\ds -\frac 1 x \paren {-\cosh^{-1} \dfrac x a} - \frac 1 a \arcsec \size {\frac x a} + C\) Definition of Real Inverse Hyperbolic Cosine

$\blacksquare$


Sources