Primitive of Power of x by Arcsecant of x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int x^m \arcsec x \rd x = \begin {cases}

\dfrac {x^{m + 1} } {m + 1} \arcsec x - \dfrac 1 {m + 1} \ds \int \dfrac {x^m \rd x} {\sqrt {x^2 - 1} } & : 0 < \arcsec x < \dfrac \pi 2 \\ \dfrac {x^{m + 1} } {m + 1} \arcsec x + \dfrac 1 {m + 1} \ds \int \dfrac {x^m \rd x} {\sqrt {x^2 - 1} } & : \dfrac \pi 2 < \arcsec x < \pi \\ \end {cases}$


Proof

With a view to expressing the primitive in the form:

$\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$

let:

\(\ds u\) \(=\) \(\ds \arcsec x\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds \begin {cases} \dfrac 1 {x \sqrt {x^2 - 1^2} } & : 0 < \arcsec x < \dfrac \pi 2 \\

\dfrac {-1} {x \sqrt {x^2 -1} } & : \dfrac \pi 2 < \arcsec x < \pi \\ \end {cases}\)

Derivative of $\arcsec x$


and let:

\(\ds \frac {\d v} {\d x}\) \(=\) \(\ds x^m\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds \frac {x^{m + 1} } {m + 1}\) Primitive of Power


First let $\arcsec x$ be in the interval $\openint 0 {\dfrac \pi 2}$.

Then:

\(\ds \int x^m \arcsec x \rd x\) \(=\) \(\ds \frac {x^{m + 1} } {m + 1} \arcsec x - \int \frac {x^{m + 1} } {m + 1} \paren {\frac 1 {x \sqrt {x^2 - 1} } } \rd x + C\) Integration by Parts
\(\ds \) \(=\) \(\ds \frac {x^{m + 1} } {m + 1} \arcsec x - \frac 1 {m + 1} \int \frac {x^m \rd x} {\sqrt {x^2 - 1} } + C\) Primitive of Constant Multiple of Function


Similarly, let $\arcsec x$ be in the interval $\openint {\dfrac \pi 2} \pi$.

Then:

\(\ds \int x^m \arcsec x \rd x\) \(=\) \(\ds \frac {x^{m + 1} } {m + 1} \arcsec x - \int \frac {x^{m + 1} } {m + 1} \paren {\frac {-1} {x \sqrt {x^2 - 1} } } \rd x + C\) Integration by Parts
\(\ds \) \(=\) \(\ds \frac {x^{m + 1} } {m + 1} \arcsec x + \frac 1 {m + 1} \int \frac {x^m \rd x} {\sqrt {x^2 - 1} } + C\) Primitive of Constant Multiple of Function

$\blacksquare$


Also see