Primitive of Reciprocal of Cosine of a x by 1 plus Sine of a x/Weierstrass Substitution

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of Reciprocal of $\cos a x \paren {1 + \sin a x}$

The Weierstrass Substitution of $\ds \int \frac {\d x} {\cos a x \paren {1 + \sin a x} }$ is:

$\ds \frac 2 a \int \frac {\d u} {\paren {1 - u} \paren {1 + u}^3}$

where $u = \tan \dfrac {a x} 2$.


Proof

\(\ds \int \frac {\d x} {\cos a x \paren {1 + \sin a x} }\) \(=\) \(\ds \frac 1 a \int \frac {\d z} {\cos z \paren {1 + \sin z} }\) Primitive of Function of Constant Multiple: $z = a x$
\(\ds \) \(=\) \(\ds \frac 1 a \int \frac {\dfrac {2 \rd u} {1 + u^2} } {\dfrac {1 - u^2} {1 + u^2} \paren {1 + \dfrac {2 u} {1 + u^2} } }\) Weierstrass Substitution: $u = \tan \dfrac z 2 = \tan \dfrac {a x} 2$
\(\ds \) \(=\) \(\ds \frac 2 a \int \frac {\d u} {\paren {1 - u^2} \paren {1 + u^2 + 2 u} }\) multiplying top and bottom by $1 + u^2$
\(\ds \) \(=\) \(\ds \frac 2 a \int \frac {\d u} {\paren {1 - u^2} \paren {1 + u}^2}\) Square of Sum
\(\ds \) \(=\) \(\ds \frac 2 a \int \frac {\d u} {\paren {1 - u} \paren {1 + u} \paren {1 + u}^2}\) Difference of Two Squares
\(\ds \) \(=\) \(\ds \frac 2 a \int \frac {\d u} {\paren {1 - u} \paren {1 + u}^3}\) simplifying

$\blacksquare$