Primitive of Reciprocal of a squared minus x squared squared/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of Reciprocal of $\paren {a^2 - x^2}^2$

$\dfrac 1 {\paren {a^2 - x^2}^2} \equiv \dfrac 1 {4 a^2} \paren {\dfrac 1 {\paren {a - x}^2} + \dfrac 1 {\paren {a + x}^2} + \dfrac 1 {a \paren {a + x} } + \dfrac 1 {a \paren {a - x} } }$


Proof

\(\ds \dfrac 1 {\paren {a^2 - x^2}^2}\) \(=\) \(\ds \dfrac 1 {\paren {a + x}^2 \paren {a - x}^2}\) Difference of Two Squares
\(\ds \) \(\equiv\) \(\ds \dfrac A {a + x} + \dfrac B {\paren {a + x}^2} + \dfrac C {a - x} + \dfrac D {\paren {a - x}^2}\)
\(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A \paren {a^2 - x^2} \paren {a - x} + B \paren {a - x}^2 + C \paren {a^2 - x^2} \paren {a + x} + D \paren {a + x}^2\) multiplying through by $\paren {a^2 - x^2}^2$
\(\text {(1)}: \quad\) \(\ds \) \(\equiv\) \(\ds A a^3 - A a^2 x - A a x^2 + A x^3 + B a^2 - 2 B a x + B x^2\) multiplying out
\(\ds \) \(\) \(\, \ds + \, \) \(\ds C a^3 + C a^2 x - C a x^2 - C x^3 + D a^2 + 2 D a x + D x^2\)


Setting $x = a$ in $(1)$:

\(\ds D \paren {2 a}^2\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds D\) \(=\) \(\ds \frac 1 {4 a^2}\)


Setting $x = -a$ in $(1)$:

\(\ds B \paren {2 a}^2\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds \frac 1 {4 a^2}\)


Equating coefficients of $x^3$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A - C\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds C\)


Equating coefficients of $x^2$ in $(1)$:

\(\ds - A a - C a + B + D\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds - A a - C a + \frac 1 {4 a^2} + \frac 1 {4 a^2}\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds -C a - C a + \frac 1 {2 a^2}\) \(=\) \(\ds 0\) as $A = C$
\(\ds \leadsto \ \ \) \(\ds 2 C\) \(=\) \(\ds \frac 1 {2 a^3}\)
\(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds \frac 1 {4 a^3}\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac 1 {4 a^3}\)


Summarising:

\(\ds A\) \(=\) \(\ds \frac 1 {4 a^3}\)
\(\ds B\) \(=\) \(\ds \frac 1 {4 a^2}\)
\(\ds C\) \(=\) \(\ds \frac 1 {4 a^3}\)
\(\ds D\) \(=\) \(\ds \frac 1 {4 a^2}\)

Hence the result.

$\blacksquare$