Primitive of Reciprocal of a x + b squared by p x + q/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of Reciprocal of a x + b squared by p x + q

$\dfrac 1 {\paren {a x + b}^2 \paren {p x + q} } \equiv \dfrac 1 {b p - a q} \paren {\dfrac {-a p} {\paren {b p - a q} \paren {a x + b} } + \dfrac {-a} {\paren {a x + b}^2} + \dfrac {p^2} {\paren {b p - a q} \paren {p x + q} } }$


Proof

\(\ds \frac 1 {\paren {a x + b}^2 \paren {p x + q} }\) \(\equiv\) \(\ds \frac A {a x + b} + \frac B {\paren {a x + b}^2} + \frac C {p x + q}\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A \paren {a x + b} \paren {p x + q} + B \paren {p x + q} + C \paren {a x + b}^2\) multiplying through by $\paren {a x + b}^2 \paren {p x + q}$


Setting $a x + b = 0$ in $(1)$:

\(\ds a x + b\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds -\frac b a\)
\(\ds \leadsto \ \ \) \(\ds B \paren {p \paren {-\frac b a} + q}\) \(=\) \(\ds 1\) substituting for $x$ in $(1)$: term in $a x + b$ is $0$
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds \frac {-a} {b p - a q}\)


Setting $p x + q = 0$ in $(1)$:

\(\ds p x + q\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds -\frac q p\)
\(\ds \leadsto \ \ \) \(\ds C \paren {a \paren {-\frac q p} + b}^2\) \(=\) \(\ds 1\) substituting for $x$ in $(1)$: term in $a x + b$ is $0$
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds \frac {p^2} {\paren {b p - a q}^2}\)


Equating $2$nd powers of $x$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A a p + C a^2\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds -C \frac a p\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds -\frac {p^2} {\paren {b p - a q}^2} \frac a p\) substituting for $C$ from $(2)$
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac {-a p} {\paren {b p - a q}^2}\) simplifying


Summarising:

\(\ds A\) \(=\) \(\ds \frac {-a p} {\paren {b p - a q}^2}\)
\(\ds B\) \(=\) \(\ds \frac {-a} {b p - a q}\)
\(\ds C\) \(=\) \(\ds \frac {p^2} {\paren {b p - a q}^2}\)

Hence the result.

$\blacksquare$