Primitive of Reciprocal of a x squared plus b x plus c/Examples/x^2 + 2 a x + b

From ProofWiki
Jump to navigation Jump to search

Example of Use of Primitive of $\dfrac 1 {x^2 + 2 a x + b}$

$\ds \int \frac {\d x} {x^2 + 2 a x + b} = \dfrac 1 {\sqrt {b - a^2} } \map \arctan {\dfrac {x + a} {\sqrt {b - a^2} } } + C$

where $b > a^2$.


Proof

We aim to use Primitive of $\dfrac 1 {a x^2 + b x + c}$ with:

\(\ds a\) \(\gets\) \(\ds 1\)
\(\ds b\) \(\gets\) \(\ds 2 a\)
\(\ds c\) \(\gets\) \(\ds b\)

We note that:

\(\ds b\) \(>\) \(\ds a^2\)
\(\ds \leadsto \ \ \) \(\ds \paren {2 a}^2 - 4 \times 1 \times b\) \(<\) \(\ds 0\)


Hence from Primitive of $\dfrac 1 {a x^2 + b x + c}$:

$\ds \int \frac {\d x} {a x^2 + b x + c} = \dfrac 2 {\sqrt {4 a c - b^2} } \map \arctan {\dfrac {2 a x + b} {\sqrt {4 a c - b^2} } } + C$


Substituting for $a$, $b$ and $c$ by hypothesis:

\(\ds \int \frac {\d x} {x^2 + 2 a x + b}\) \(=\) \(\ds \dfrac 2 {\sqrt {4 \times 1 \times b - \paren {2 a}^2} } \map \arctan {\dfrac {2 \times 1 \times x + 2 a} {\sqrt {4 \times 1 \times b - \paren {2 a}^2} } } + C\)
\(\ds \) \(=\) \(\ds \dfrac 1 {\sqrt {b - a^2} } \map \arctan {\dfrac {x + a} {\sqrt {b - a^2} } } + C\)

$\blacksquare$


Sources