Primitive of Reciprocal of a x squared plus b x plus c/Examples/x^2 + 4 x + 5

From ProofWiki
Jump to navigation Jump to search

Example of Use of Primitive of $\dfrac 1 {a x^2 + b x + c}$

$\ds \int \dfrac {\d x} {x^2 + 4 x + 5} = \map \arctan {x + 2} + C$


Proof

We aim to use Primitive of $\dfrac 1 {a x^2 + b x + c}$ with:

\(\ds a\) \(=\) \(\ds 1\)
\(\ds b\) \(=\) \(\ds 4\)
\(\ds c\) \(=\) \(\ds 5\)

We note that:

\(\ds b^2 - 4 a c\) \(=\) \(\ds 4^2 - 4 \times 1 \times 5\)
\(\ds \) \(=\) \(\ds 16 - 20\)
\(\ds \) \(=\) \(\ds -4\)


Hence from Primitive of $\dfrac 1 {a x^2 + b x + c}$:

$\ds \int \frac {\d x} {a x^2 + b x + c} = \dfrac 2 {\sqrt {4 a c - b^2} } \map \arctan {\dfrac {2 a x + b} {\sqrt {4 a c - b^2} } } + C$


Substituting for $a$, $b$ and $c$ and simplifying:

\(\ds \int \frac {\d x} {x^2 + 4 x + 5}\) \(=\) \(\ds \dfrac 2 {\sqrt {4 \times 1 \times 5 - 4^2} } \map \arctan {\dfrac {2 \times 1 \cdot x + 4} {\sqrt {4 \times 1 \times 5 - 4^2} } } + C\)
\(\ds \) \(=\) \(\ds \dfrac 2 {\sqrt 4} \map \arctan {\dfrac {2 x + 4} {\sqrt 4} } + C\) simplifying
\(\ds \) \(=\) \(\ds \map \arctan {x + 2} + C\) simplifying

$\blacksquare$


Sources