Primitive of Reciprocal of p squared by square of Sine of a x plus q squared by square of Cosine of a x/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {p^2 \sin^2 a x + q^2 \cos^2 a x} = \frac 1 {a p q} \map \arctan {\frac {p \tan a x} q} + C$


Proof

\(\ds \int \frac {\d x} {p^2 \sin^2 a x + q^2 \cos^2 a x}\) \(=\) \(\ds \int \frac {\sec^2 a x \d x} {p^2 \tan^2 a x + q^2}\) multiplying by $\dfrac {\sec^2 a x} {\sec^2 a x}$
\(\ds \) \(=\) \(\ds \frac 1 a \int \frac {\d t} {p^2 t^2 + q^2}\) substituting $t = \tan a x$
\(\ds \) \(=\) \(\ds \frac 1 {a p^2} \int \frac {\d t} {t^2 + \paren {\frac q p}^2}\)
\(\ds \) \(=\) \(\ds \frac 1 {a p^2} \times \frac p q \map \arctan {\frac {p t} q} + C\) Primitive of $\dfrac 1 {x^2 + a^2}$
\(\ds \) \(=\) \(\ds \frac 1 {a p q} \map \arctan {\frac {p \tan a x} q} + C\) substituting back for $t$

$\blacksquare$