Primitive of Reciprocal of x by a x squared plus b x plus c/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of $\dfrac 1 {x \paren {a x^2 + b x + c} }$

$\dfrac 1 {x \paren {a x^2 + b x + c} } \equiv \dfrac 1 {c x} - \dfrac {a x + b} {c \paren {a x^2 + b x + c} }$


Proof

\(\ds \dfrac 1 {x \paren {a x^2 + b x + c} }\) \(\equiv\) \(\ds \frac A x + \frac {B x + C} {a x^2 + b x + c}\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A \paren {a x^2 + b x + c} + B x^2 + C x\) multiplying through by $x \paren {a x^2 + b x + c}$


Setting $x = 0$ in $(1)$:

\(\ds A c\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac 1 c\)


Equating coefficients of $x$ in $(1)$:

\(\ds A b + C\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds \frac {-b} c\)


Equating coefficients of $x^2$ in $(1)$:

\(\ds A a + B\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds \frac {-a} c\)


Summarising:

\(\ds A\) \(=\) \(\ds \frac 1 c\)
\(\ds B\) \(=\) \(\ds \frac {-b} c\)
\(\ds C\) \(=\) \(\ds \frac {-a} c\)


Hence the result.

$\blacksquare$