Primitive of Reciprocal of x by x squared plus a squared squared/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of Reciprocal of $x \paren {x^2 + a^2}^2$

$\dfrac 1 {x \paren {x^2 + a^2}^2} \equiv \dfrac 1 {a^4 x} - \dfrac x {a^4 \paren {x^2 + a^2} } - \dfrac x {a^2 \paren {x^2 + a^2}^2}$


Proof

\(\ds \dfrac 1 {x \paren {x^2 + a^2}^2}\) \(\equiv\) \(\ds \dfrac A x + \dfrac {B x + C} {x^2 + a^2} + \dfrac {D x + E} {\paren {x^2 + a^2}^2}\)
\(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A \paren {x^2 + a^2}^2 + \paren {B x + C} x \paren {x^2 + a^2} + \paren {D x + E} x\) multiplying through by $x \paren {x^2 + a^2}^2$
\(\text {(1)}: \quad\) \(\ds \) \(\equiv\) \(\ds A x^4 + 2 A a^2 x^2 + A a^4 + B x^4 + B x^2 a^2 + C x^3 + C x a^2 + D x^2 + E x\) multiplying everything out


Setting $x = 0$ in $(1)$:

\(\ds A a^4\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac 1 {a^4}\)


Equating coefficients of $x^4$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A + B\)
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds -\frac 1 {a^4}\)


Equating coefficients of $x^3$ in $(1)$:

\(\ds C\) \(=\) \(\ds 0\)


Equating coefficients of $x$ in $(1)$:

\(\ds 0\) \(=\) \(\ds C + E\)
\(\ds \leadsto \ \ \) \(\ds E\) \(=\) \(\ds 0\)


Equating coefficients of $x^2$ in $(1)$:

\(\ds 0\) \(=\) \(\ds 2 A a^2 + B a^2 + D\)
\(\ds \leadsto \ \ \) \(\ds D\) \(=\) \(\ds -\frac 1 {a^2}\)


Summarising:

\(\ds A\) \(=\) \(\ds \frac 1 {a^4}\)
\(\ds B\) \(=\) \(\ds -\frac 1 {a^4}\)
\(\ds C\) \(=\) \(\ds 0\)
\(\ds D\) \(=\) \(\ds -\frac 1 {a^2}\)
\(\ds E\) \(=\) \(\ds 0\)

Hence the result.

$\blacksquare$