Primitive of Reciprocal of x cubed by a x + b/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of $\dfrac 1 {x^3 \paren {a x + b} }$

$\dfrac 1 {x^3 \paren {a x + b} } \equiv \dfrac {a^2} {b^3 x} + \dfrac {-a} {b^2 x^2} + \dfrac 1 {b x^3} + \dfrac {-a^3} {b^3 \paren {a x + b} }$


Proof

\(\ds \dfrac 1 {x^3 \paren {a x + b} }\) \(\equiv\) \(\ds \dfrac A x + \dfrac B {x^2} + \dfrac C {x^3} + \dfrac D {a x + b}\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A x^2 \paren {a x + b} + B x \paren {a x + b} + C \paren {a x + b} + D x^3\) multiplying through by $x^3 \paren {a x + b}$
\(\ds \) \(\equiv\) \(\ds A a x^3 + A b x^2 + B a x^2 + B b x + C a x + C b + D x^3\) multiplying everything out


Setting $a x + b = 0$ in $(1)$:

\(\ds a x + b\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds -\frac b a\)
\(\ds \leadsto \ \ \) \(\ds D \paren {-\frac b a}^3\) \(=\) \(\ds 1\) substituting for $x$ in $(1)$: terms in $a x + b$ are all $0$
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds D\) \(=\) \(\ds -\frac {a^3} {b^3}\)


Equating constants in $(1)$:

\(\ds 1\) \(=\) \(\ds C b\)
\(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds \frac 1 b\)


Equating $3$rd powers of $x$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A a + D\)
\(\text {(3)}: \quad\) \(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac {a^2} {b^3}\) substituting for $D$ from $(2)$ and simplifying


Equating $2$nd powers of $x$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A b + B a\)
\(\ds \) \(=\) \(\ds \frac {a^2} {b^3} b + B a\) substituting for $A$ from $(3)$
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds -\frac a {b^2}\) rearranging and simplifying


Summarising:

\(\ds A\) \(=\) \(\ds \frac {a^2} {b^3}\)
\(\ds B\) \(=\) \(\ds -\frac a {b^2}\)
\(\ds C\) \(=\) \(\ds \frac 1 b\)
\(\ds D\) \(=\) \(\ds -\frac {a^3} {b^3}\)

Hence the result.

$\blacksquare$