Primitive of Reciprocal of x cubed by a x + b squared/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of $\dfrac 1 {x^3 \paren {a x + b}^2}$

$\dfrac 1 {x^3 \paren {a x + b}^2} \equiv \dfrac {3 a^2} {b^4 x} - \dfrac {2 a} {b^3 x^2} + \dfrac 1 {b^2 x^3} - \dfrac {3 a^3} {b^4 \paren {a x + b} } - \dfrac {a^3} {b^3 \paren {a x + b}^2}$


Proof

\(\ds \dfrac 1 {x^3 \paren {a x + b}^2}\) \(\equiv\) \(\ds \dfrac A x + \dfrac B {x^2} + \dfrac C {x^3} + \dfrac D {a x + b} + \dfrac E {\paren {a x + b}^2}\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A x^2 \paren {a x + b}^2 + B x \paren {a x + b}^2 + C \paren {a x + b}^2 + D x^3 \paren {a x + b} + E x^3\) multiplying through by $x^3 \paren {a x + b}^2$
\(\ds \) \(\equiv\) \(\ds A a^2 x^4 + 2 A a b x^3 + A b^2 x^2\) multiplying everything out
\(\ds \) \(\) \(\, \ds + \, \) \(\ds B a^2 x^3 + 2 B a b x^2 + B b^2 x\) (tedious though this is, it helps to
\(\ds \) \(\) \(\, \ds + \, \) \(\ds C a^2 x^2 + 2 C a b x + C b^2\) identify the equal indices)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds D a x^4 + D b x^3 + E x^3\)


Setting $a x + b = 0$ in $(1)$:

\(\ds a x + b\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds -\frac b a\)
\(\ds \leadsto \ \ \) \(\ds E \paren {-\frac b a}^3\) \(=\) \(\ds 1\) substituting for $x$ in $(1)$: terms in $a x + b$ are all $0$
\(\ds \leadsto \ \ \) \(\ds E\) \(=\) \(\ds -\frac {a^3} {b^3}\)


Equating constants in $(1)$:

\(\ds 1\) \(=\) \(\ds C b^2\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds \frac 1 {b^2}\)


Equating $1$st powers of $x$ in $(1)$:

\(\ds 0\) \(=\) \(\ds 2 C a b + B b^2\)
\(\ds \leadsto \ \ \) \(\ds \frac {2 a b} {b^2}\) \(=\) \(\ds -B b^2\) subtituting for $C$ from $(2)$
\(\text {(3)}: \quad\) \(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds -\frac {2 a} {b^3}\)


Equating $2$nd powers of $x$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A b^2 + 2 B a b + C a^2\)
\(\ds \) \(=\) \(\ds A b^2 + 2 \paren {-\frac {2 a} {b^3} } a b + \paren {\frac 1 {b^2} } a^2\) substituting for $B$ and $C$ from $(2)$ and $(3)$
\(\ds \leadsto \ \ \) \(\ds A b^2\) \(=\) \(\ds \frac {4 a^2} {b^2} - \frac {a^2} {b^2}\) rearranging
\(\text {(4)}: \quad\) \(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac {3 a^2} {b^4}\) simplifying


Equating $4$th powers of $x$:

\(\ds 0\) \(=\) \(\ds A a^2 + D a\)
\(\ds \leadsto \ \ \) \(\ds D\) \(=\) \(\ds \frac {3 a^3} {b^4}\) substituting for $A$ from $(3)$ and simplifying


Summarising:

\(\ds A\) \(=\) \(\ds \frac {3 a^2} {b^4}\)
\(\ds B\) \(=\) \(\ds -\frac {2 a} {b^3}\)
\(\ds C\) \(=\) \(\ds \frac 1 {b^2}\)
\(\ds D\) \(=\) \(\ds \frac {3 a^3} {b^4}\)
\(\ds E\) \(=\) \(\ds -\frac {a^3} {b^3}\)

Hence the result.

$\blacksquare$