Primitive of Reciprocal of x fourth plus a fourth/Lemma 1

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of Reciprocal of $x^4 + a^4$

$\ds \int \frac {\d x} {x^2 + a x \sqrt 2 + a^2} = \frac {\sqrt 2} a \map \arctan {1 + \frac {x \sqrt 2} a}$


Proof

The discriminant of $x^2 + a x \sqrt 2 + a^2$ is:

\(\ds \map {\operatorname {Disc} } {x^2 + a x \sqrt 2 + a^2}\) \(=\) \(\ds \paren {a \sqrt 2}^2 - 4 \times 1 \times a^2\)
\(\ds \) \(=\) \(\ds 2 a^2 - 4 a^2\)
\(\ds \) \(=\) \(\ds - 2 a^2\)
\(\ds \) \(=\) \(\ds < 0\)

Thus:

\(\ds \int \frac {\d x} {x^2 + a x \sqrt 2 + a^2}\) \(=\) \(\ds \frac 2 {\sqrt {4 a^2 - \paren {a \sqrt 2}^2} } \map \arctan {\frac {2 x + a \sqrt 2} {\sqrt {4 a^2 - \paren {a \sqrt 2}^2} } }\) Primitive of $\dfrac 1 {a x^2 + b x + c}$
\(\ds \) \(=\) \(\ds \frac 2 {a \sqrt 2} \map \arctan {\frac {2 x + a \sqrt 2} {a \sqrt 2} }\) simplifying
\(\ds \) \(=\) \(\ds \frac {\sqrt 2} a \map \arctan {1 + \frac {x \sqrt 2} a}\) simplifying

$\blacksquare$