Primitive of Reciprocal of x fourth plus a fourth/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of Reciprocal of $x^4 + a^4$

$\dfrac 1 {x^4 + a^4} = \dfrac {x + a \sqrt 2} {2 a^3 \sqrt 2 \paren {x^2 + a x \sqrt 2 + a^2} } - \dfrac {x - a \sqrt 2} {2 a^3 \sqrt 2 \paren {x^2 - a x \sqrt 2 + a^2} }$


Proof

\(\ds \frac 1 {x^4 + a^4}\) \(\equiv\) \(\ds \frac 1 {\paren {x^2 + a x \sqrt 2 + a^2} \paren {x^2 - a x \sqrt 2 + a^2} }\) Sum of Two Fourth Powers
\(\ds \) \(\equiv\) \(\ds \frac {A x + B} {x^2 + a x \sqrt 2 + a^2} + \frac {C x + D} {x^2 - a x \sqrt 2 + a^2}\)
\(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds \paren {A x + B} \paren {x^2 - a x \sqrt 2 + a^2} + \paren {C x + D} \paren {x^2 + a x \sqrt 2 + a^2}\)
\(\text {(1)}: \quad\) \(\ds \) \(\equiv\) \(\ds A x^3 + B x^2 - A a x^2 \sqrt 2 - B a x \sqrt 2 + A x a^2 + B a^2\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds C x^3 + D x^2 + C a x^2 \sqrt 2 + D a x \sqrt 2 + C x a^2 + D a^2\)


Equating coefficients of $x^3$ in $(1)$:

\(\ds A + C\) \(=\) \(\ds 0\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds -A\) \(=\) \(\ds C\)


Equating coefficients of $x^2$ in $(1)$:

\(\ds -A a \sqrt 2 + B + C a \sqrt 2 + D\) \(=\) \(\ds 0\)
\(\text {(3)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 2 C a \sqrt 2 + B + D\) \(=\) \(\ds 0\) substituting for $A$ from $(2)$


Equating coefficients of $x$ in $(1)$:

\(\ds -B a \sqrt 2 + A a^2 + D a \sqrt 2 + C a^2\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds -B a \sqrt 2 - C a^2 + D a \sqrt 2 + C a^2\) \(=\) \(\ds 0\) substituting for $A$ from $(2)$
\(\ds \leadsto \ \ \) \(\ds -B + D\) \(=\) \(\ds 0\)
\(\text {(4)}: \quad\) \(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds D\)


Setting $x = 0$ in $(1)$:

\(\ds B a^2 + D a^2\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds 2 D a^2\) \(=\) \(\ds 1\) substituting for $B$ from $(4)$
\(\ds \leadsto \ \ \) \(\ds D\) \(=\) \(\ds \frac 1 {2 a^2}\)
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds \frac 1 {2 a^2}\) from $(4)$
\(\ds \leadsto \ \ \) \(\ds 2 C a \sqrt 2 + \frac 1 {a^2}\) \(=\) \(\ds 0\) substituting for $B$ and $D$ in $(3)$
\(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds \frac {-1} {2 a^3 \sqrt 2}\) substituting for $B$ and $D$ in $(3)$
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac 1 {2 a^3 \sqrt 2}\) from $(2)$


Summarising:

\(\ds A\) \(=\) \(\ds \frac 1 {2 a^3 \sqrt 2}\)
\(\ds B\) \(=\) \(\ds \frac 1 {2 a^2}\)
\(\ds C\) \(=\) \(\ds \frac {-1} {2 a^3 \sqrt 2}\)
\(\ds D\) \(=\) \(\ds \frac 1 {2 a^2}\)


Thus:

\(\ds \frac 1 {x^4 + a^4}\) \(=\) \(\ds \frac {\frac 1 {2 a^3 \sqrt 2} x + \frac 1 {2 a^2} } {x^2 + a x \sqrt 2 + a^2} + \frac {\frac {-1} {2 a^3 \sqrt 2} x + \frac 1 {2 a^2} } {x^2 - a x \sqrt 2 + a^2}\)
\(\ds \) \(=\) \(\ds \frac {x + a \sqrt 2} {2 a^3 \sqrt 2 \paren {x^2 + a x \sqrt 2 + a^2} } - \frac {x - a \sqrt 2} {2 a^3 \sqrt 2 \paren {x^2 - a x \sqrt 2 + a^2} }\)

$\blacksquare$