Primitive of Square of Cosine Function/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \cos^2 x \rd x = \frac x 2 + \frac {\sin 2 x} 4 + C$


Proof

\(\ds I_n\) \(=\) \(\ds \int \cos^n x \rd x\)
\(\ds \) \(=\) \(\ds \dfrac {\cos^{n - 1} x \sin x} n + \dfrac {n - 1} n I_{n-2}\) Reduction Formula for Integral of Power of Cosine
\(\ds I_0\) \(=\) \(\ds \int \left({\cos x}\right)^0 \rd x\)
\(\ds \) \(=\) \(\ds \int \rd x\)
\(\ds \) \(=\) \(\ds x + C\) Primitive of Constant
\(\ds \leadsto \ \ \) \(\ds I_2\) \(=\) \(\ds \frac {\cos x \sin x} 2 + \frac x 2 + \frac C 2\) setting $n = 2$
\(\ds \) \(=\) \(\ds \frac {\sin 2 x} 4 + \frac x 2 + C'\) Double Angle Formula for Sine

$\blacksquare$