Primitive of p x + q over a x squared plus 2 b x plus c/Examples/2 x + 1 over 3 x^2 + 4 x + 2/Proof 2

From ProofWiki
Jump to navigation Jump to search

Example of Use of Primitive of $\dfrac {p x + q} {a x^2 + 2 b x + c}$

$\ds \int \dfrac {2 x + 1} {3 x^2 + 4 x + 2} \rd x = \dfrac 1 3 \ln \size {3 x^2 + 4 x + 2} - \dfrac 1 {3 \sqrt 2} \map \arctan {\dfrac {3 x + 2} {\sqrt 2} } + C$


Proof

\(\ds \int \dfrac {2 x + 1} {3 x^2 + 4 x + 2} \rd x\) \(=\) \(\ds \dfrac 1 3 \int \dfrac {6 x + 3} {3 x^2 + 4 x + 2} \rd x\)
\(\ds \) \(=\) \(\ds \dfrac 1 3 \int \dfrac {6 x + 4 - 1} {3 x^2 + 4 x + 2} \rd x\)
\(\ds \) \(=\) \(\ds \dfrac 1 3 \paren {\int \dfrac {6 x + 4} {3 x^2 + 4 x + 2} \rd x - \int \dfrac {\d x} {3 x^2 + 4 x + 2} }\)
\(\ds \) \(=\) \(\ds \dfrac 1 3 \paren {\ln \size {3 x^2 + 4 x + 2} - \int \dfrac {\d x} {3 x^2 + 4 x + 2} }\) Primitive of Function under its Derivative: $\map {\dfrac \d {\d x} } {3 x^2 + 4 x + 2} = 6 x + 4$
\(\ds \) \(=\) \(\ds \dfrac 1 3 \ln \size {3 x^2 + 4 x + 2} - \dfrac 1 3 \paren {\dfrac 1 {\sqrt 2} \map \arctan {\dfrac {3 x + 2} {\sqrt 2} } }\) Primitive of $\dfrac 1 {3 x^2 + 4 x + 2}$
\(\ds \) \(=\) \(\ds \dfrac 1 3 \ln \size {3 x^2 + 4 x + 2} - \dfrac 1 {3 \sqrt 2} \map \arctan {\dfrac {3 x + 2} {\sqrt 2} } + C\) simplifying

$\blacksquare$


Sources