Primitive of x cubed over x squared minus a squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {x^3 \rd x} {x^2 - a^2} = \frac {x^2} 2 + \frac {a^2} 2 \map \ln {x^2 - a^2} + C$

for $x^2 > a^2$.


Proof

Let:

\(\ds \int \frac {x^3 \rd x} {x^2 - a^2}\) \(=\) \(\ds \int \frac {x \paren {x^2 - a^2 + a^2} } {x^2 - a^2} \rd x\)
\(\ds \) \(=\) \(\ds \int \frac {x \paren {x^2 - a^2} } {x^2 - a^2} \rd x + \int \frac {a^2 x} {x^2 - a^2} \rd x\)
\(\ds \) \(=\) \(\ds \int x \rd x + a^2 \int \frac {x \rd x} {x^2 - a^2}\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds \frac {x^2} 2 + a^2 \int \frac {x \rd x} {x^2 - a^2} + C\) Primitive of Power
\(\ds \) \(=\) \(\ds \frac {x^2} 2 + a^2 \paren {\frac 1 2 \map \ln {x^2 - a^2} } + C\) Primitive of $\dfrac x {x^2 - a^2}$
\(\ds \) \(=\) \(\ds \frac {x^2} 2 + \frac {a^2} 2 \map \ln {x^2 - a^2} + C\) simplifying

$\blacksquare$


Also see


Sources