Primitive of x over a x + b by p x + q/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of x over a x + b by p x + q

$\dfrac x {\paren {a x + b} \paren {p x + q} } \equiv \dfrac b {\paren {b p - a q} \paren {a x + b} } - \dfrac q {\paren {b p - a q} \paren {p x + q} }$


Proof

\(\ds \frac x {\paren {a x + b} \paren {p x + q} }\) \(\equiv\) \(\ds \frac A {a x + b} + \frac B {p x + q}\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds x\) \(\equiv\) \(\ds A \paren {p x + q} + B \paren {a x + b}\) multiplying through by $\paren {a x + b} \paren {p x + q}$


Setting $p x + q = 0$ in $(1)$:

\(\ds p x + q\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds -\frac q p\)
\(\ds \leadsto \ \ \) \(\ds B \paren {a \paren {-\frac q p} + b}\) \(=\) \(\ds -\frac q p\) substituting for $x$ in $(1)$: term in $p x + q$ is $0$
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds \frac {-q} {b p - a q}\)


Setting $a x + b = 0$ in $(1)$:

\(\ds a x + b\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds -\frac b a\)
\(\ds \leadsto \ \ \) \(\ds A \paren {p \paren {-\frac b a} + q}\) \(=\) \(\ds -\frac b a\) substituting for $x$ in $(1)$: term in $a x + b$ is $0$
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac b {b p - a q}\)


Summarising:

\(\ds A\) \(=\) \(\ds \frac b {p b - a q}\)
\(\ds B\) \(=\) \(\ds \frac {-q} {b p - a q}\)

Hence the result.

$\blacksquare$