Primitive of x squared by Root of x squared minus a squared/Also presented as

From ProofWiki
Jump to navigation Jump to search

Primitive of $x^2 \sqrt {x^2 - a^2}$: Also presented as

This result is also seen presented in the form:

$\ds \int x^2 \sqrt {x^2 - a^2} \rd x = \frac x 8 \paren {2 x^2 - a^2} \sqrt {x^2 - a^2} - \frac {a^4} 8 \arcosh \dfrac x a + C$


Proof

\(\ds \int x^2 \sqrt {x^2 - a^2} \rd x\) \(=\) \(\ds \frac {x \paren {\sqrt {x^2 - a^2} }^3} 4 + \frac {a^2 x \sqrt {x^2 - a^2} } 8 - \frac {a^4} 8 \ln \size {x + \sqrt {x^2 - a^2} } + C\) Primitive of $x^2 \sqrt {x^2 - a^2}$
\(\ds \) \(=\) \(\ds \frac {x \paren {\sqrt {x^2 - a^2} }^3} 4 + \frac {a^2 x \sqrt {x^2 - a^2} } 8 - \frac {a^4} 8 \arcosh \dfrac x a + C\) Definition of Inverse Hyperbolic Cosine
\(\ds \) \(=\) \(\ds \frac {2 x \paren {\sqrt {x^2 - a^2} }^3 + a^2 x \sqrt {x^2 - a^2} } 8 - \frac {a^4} 8 \arcosh \dfrac x a + C\)
\(\ds \) \(=\) \(\ds \frac {x \sqrt {x^2 - a^2} \paren {2 \paren {x^2 - a^2} + a^2} } 8 - \frac {a^4} 8 \arcosh \dfrac x a + C\) Distributive Laws of Arithmetic
\(\ds \) \(=\) \(\ds \frac x 8 \paren {2 x^2 - a^2} \sqrt {x^2 - a^2} - \frac {a^4} 8 \arcosh \dfrac x a + C\) simplifying

$\blacksquare$


Sources