Ratio of Consecutive Fibonacci Numbers/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

For $n \in \N$, let $f_n$ be the $n$th Fibonacci number.


Then:

$\ds \lim_{n \mathop \to \infty} \frac {f_{n + 1} } {f_n} = \phi$

where $\phi = \dfrac {1 + \sqrt 5} 2$ is the golden mean.


Proof

Let:

\(\ds \phi\) \(:=\) \(\ds \dfrac {1 + \sqrt 5} 2\)
\(\ds \hat \phi\) \(:=\) \(\ds \paren {1 - \phi}\) \(\ds = \dfrac {1 - \sqrt 5} 2\)
\(\ds \alpha\) \(:=\) \(\ds \dfrac {\phi} {\hat \phi}\)

Then:

\(\ds \alpha\) \(=\) \(\ds \dfrac {\phi} {\hat \phi}\)
\(\ds \) \(=\) \(\ds \dfrac {1 + \sqrt 5} {1 - \sqrt 5}\)
\(\ds \) \(=\) \(\ds \dfrac {1 + \sqrt 5} {1 - \sqrt 5} \paren {\dfrac {1 + \sqrt 5} {1 + \sqrt 5} }\) multiplying top and bottom by $1 + \sqrt 5$
\(\ds \) \(=\) \(\ds \dfrac {6 + 2 \sqrt 5} {-4}\)
\(\ds \) \(=\) \(\ds -\dfrac {3 + \sqrt 5} 2\)


Recall the Euler-Binet Formula:

$f_n = \dfrac {\phi^n - \hat \phi^n} {\sqrt 5}$

Let $n \ge 1$.

It immediately follows that:

\(\ds \frac {f_{n + 1} } {f_n}\) \(=\) \(\ds \dfrac {\phi^{n + 1} - \hat \phi^{n + 1} } {\phi^n - \hat \phi^n}\)
\(\ds \) \(=\) \(\ds \dfrac {\paren {\phi^{n + 1} - \phi \hat \phi^n} + \paren {\phi \hat \phi^n - \hat \phi^{n + 1} } } {\phi^n - \hat \phi^n}\) adding and subtracting $\phi \hat \phi^n$ to the numerator
\(\ds \) \(=\) \(\ds \dfrac {\phi \paren {\phi^n - \hat \phi^n} + \hat \phi^n \paren {\phi - \hat \phi } } {\phi^n - \hat \phi^n}\) factoring out $\phi$ and $\hat \phi^n$ in the numerator
\(\ds \) \(=\) \(\ds \phi + \dfrac {\hat \phi^n \paren {\phi - \hat \phi} } {\phi^n - \hat \phi^n}\)
\(\ds \) \(=\) \(\ds \phi + \dfrac {\hat \phi^n \paren {\phi - \hat \phi} } {\phi^n - \hat \phi^n} \dfrac {\dfrac 1 {\hat \phi^n } } {\dfrac 1 {\hat \phi^n } }\) multiplying top and bottom by $\dfrac 1 {\hat \phi^n }$
\(\ds \) \(=\) \(\ds \phi + \dfrac {\paren {\phi - \hat \phi} } {\dfrac {\phi^n} {\hat \phi^n} - 1}\)
\(\ds \) \(=\) \(\ds \phi + \dfrac {\sqrt 5} {\alpha^n - 1}\)

From the definition of $\alpha$:

$\size \alpha > 1$

Therefore:

\(\ds \lim_{n \mathop \to \infty} \frac {f_{n + 1} } {f_n}\) \(=\) \(\ds \lim_{n \mathop \to \infty}\ \phi + \dfrac {\sqrt 5} {\alpha^n - 1}\)
\(\ds \) \(=\) \(\ds \phi + 0\)
\(\ds \) \(=\) \(\ds \phi\)

$\blacksquare$