Real Area Hyperbolic Tangent of Reciprocal equals Real Area Hyperbolic Cotangent

From ProofWiki
Jump to navigation Jump to search

Theorem

Everywhere that the function is defined:

$\map \artanh {\dfrac 1 x} = \arcoth x$

where $\artanh$ and $\arcoth$ denote real area hyperbolic tangent and real area hyperbolic cotangent respectively.


Proof

\(\ds \map \artanh {\dfrac 1 x}\) \(=\) \(\ds y\)
\(\ds \leadstoandfrom \ \ \) \(\ds \frac 1 x\) \(=\) \(\ds \tanh y\) Definition of Real Area Hyperbolic Tangent
\(\ds \leadstoandfrom \ \ \) \(\ds \frac 1 x\) \(=\) \(\ds \frac {\cosh y} {\sinh y}\) Definition 2 of Hyperbolic Tangent
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(=\) \(\ds \frac {\sinh y} {\cosh y}\)
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(=\) \(\ds \coth y\) Definition 2 of Hyperbolic Cotangent
\(\ds \leadstoandfrom \ \ \) \(\ds \arcoth x\) \(=\) \(\ds y\) Definition of Real Area Hyperbolic Cotangent

$\blacksquare$


Sources