# Real and Imaginary Part Projections are Continuous

## Theorem

Define the real-valued functions $x, y: \C \to \R$ by:

$\forall z \in \C: \map x z = \map \Re z$
$\forall z \in \C: \map y z = \map \Im z$

Equip $\R$ with the usual Euclidean metric.

Equip $\C$ with the usual Euclidean metric.

Then both $x$ and $y$ are continuous functions.

## Proof

Let $z \in \C$, and let $\epsilon \in \R_{>0}$.

Put $\delta = \epsilon$.

For all $w \in \C$ with $\cmod {w - z} < \delta$:

 $\ds \cmod {\map \Re w - \map \Re z}$ $=$ $\ds \cmod {\map \Re w + i \map \Im w - \map \Re z - i \map \Im z + i \map \Im z - i \map \Im w}$ $\ds$ $\le$ $\ds \cmod {\map \Re w + i \map \Im w - \map \Re z - i \map \Im z} + \cmod {i \map \Im z - i \map \Im w}$ Triangle Inequality for Complex Numbers $\ds$ $\le$ $\ds \cmod {\map \Re w + i \map \Im w - \map \Re z - i \map \Im z}$ Complex Modulus is Non-Negative $\ds$ $=$ $\ds \cmod {w - z}$ $\ds$ $<$ $\ds \delta$ $\ds$ $=$ $\ds \epsilon$

and

 $\ds \cmod {\map \Im w - \map \Im z}$ $=$ $\ds \cmod i \cmod {\map \Im w - \map \Im z}$ as $\cmod i = 1$ $\ds$ $=$ $\ds \cmod {i \map \Im w - i \map \Im z}$ Complex Modulus of Product of Complex Numbers $\ds$ $=$ $\ds \cmod {\map \Re w + i \map \Im w - \map \Re z - i \map \Im z + \map \Re z - \map \Re w}$ $\ds$ $\le$ $\ds \cmod {\map \Re w + i \map \Im w - \map \Re z - i \map \Im z} + \cmod {\map \Re z - \map \Re w}$ Triangle Inequality for Complex Numbers $\ds$ $\le$ $\ds \cmod {\map \Re w + i \map \Im w - \map \Re z - i \map \Im z}$ Complex Modulus is Non-Negative $\ds$ $=$ $\ds \cmod {w - z}$ $\ds$ $<$ $\ds \delta$ $\ds$ $=$ $\ds \epsilon$

It follows by definition that $x$ and $y$ are both continuous.

$\blacksquare$