Reciprocal of One Minus Secant

From ProofWiki
Jump to navigation Jump to search

Theorem

$\dfrac {\sin^2 x + 2 \cos x - 1} {\sin^2 x + 3 \cos x - 3} = \dfrac 1 {1 - \sec x}$


Proof

\(\ds \frac {\sin^2 x + 2 \cos x - 1} {\sin^2 x + 3 \cos x - 3}\) \(=\) \(\ds \frac {1 - \cos^2 x - 2 \cos x - 1} {1 - \cos^2 x + 3 \cos x - 3}\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \frac {\cos^2 x - 2 \cos x} {\cos^2 x - 3 \cos x + 2}\)
\(\ds \) \(=\) \(\ds \frac {\cos x \paren {\cos x - 2} } {\paren {\cos x - 1} \paren {\cos x - 2} }\)
\(\ds \) \(=\) \(\ds \frac {\cos x} {\cos x - 1}\)
\(\ds \) \(=\) \(\ds \frac 1 {1 - \frac 1 {\cos x} }\)
\(\ds \) \(=\) \(\ds \frac 1 {1 - \sec x}\) Definition of Secant Function

$\blacksquare$