Reciprocal times Derivative of Gamma Function/Examples/Sum of Reciprocal of 1 + 3k Alternating in Sign

From ProofWiki
Jump to navigation Jump to search

Example of Use of Reciprocal times Derivative of Gamma Function

$\ds \sum_{k \mathop = 1}^\infty \dfrac {\paren {-1}^{k + 1} } {1 + 3 k} = 1 - \dfrac 1 3 \ln 2 - \dfrac {\pi \sqrt 3} 9$


Proof

\(\ds 2 b \sum_{k \mathop = 1}^\infty \dfrac {\paren {-1}^{k + 1} } {a + b k}\) \(=\) \(\ds \map \psi {\dfrac a {2 b} + 1} - \map \psi {\dfrac a {2 b} + \dfrac 1 2}\) Reciprocal times Derivative of Gamma Function: Corollary $2$
\(\ds \leadsto \ \ \) \(\ds 6 \sum_{k \mathop = 1}^\infty \dfrac {\paren {-1}^{k + 1} } {1 + 3 k}\) \(=\) \(\ds \map \psi {\dfrac 1 6 + 1} - \map \psi {\dfrac 1 6 + \dfrac 1 2}\) $a := 1$ and $b := 3$
\(\ds \leadsto \ \ \) \(\ds \sum_{k \mathop = 1}^\infty \dfrac {\paren {-1}^{k + 1} } {1 + 3 k}\) \(=\) \(\ds \dfrac {\map \psi {\dfrac 7 6} - \map \psi {\dfrac 2 3} } 6\) dividing both sides by $6$
\(\ds \) \(=\) \(\ds \dfrac {\paren {-\gamma - 2 \ln 2 - \dfrac 3 2 \ln 3 - \dfrac {\pi \sqrt 3} 2 + 6} - \paren {-\gamma - \dfrac 3 2 \ln 3 + \dfrac \pi {2 \sqrt 3} } } 6\) Digamma Function of Seven Sixths and Digamma Function of Two Thirds
\(\ds \) \(=\) \(\ds \paren{ -\dfrac \gamma 6 + \dfrac \gamma 6} - \dfrac 1 3 \ln 2 + \paren {-\dfrac 3 2 \ln 3 + \dfrac 3 2 \ln 3} + \paren {-\dfrac {\pi \sqrt 3} {12} - \dfrac {\pi \sqrt 3} {36} }\) grouping terms
\(\ds \) \(=\) \(\ds 1 - \dfrac 1 3 \ln 2 - \dfrac {\pi \sqrt 3} 9\)

$\blacksquare$