Recursively Enumerable Set is Image of Primitive Recursive Function/Corollary

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S \subseteq \N$ be recursively enumerable.

Suppose $S$ is non-empty.

Then there exists a primitive recursive function $f : \N \to \N$ such that:

$\Img f = S$


Proof

By Recursively Enumerable Set is Image of Primitive Recursive Function, there is some primitive recursive $g : \N^k \to \N$ such that:

$\Img g = S$

As $S$ is non-empty, let $n \in S$.

Define:

$\map f x = \begin{cases}

\map g {\map {\operatorname{pred}} {\paren{x}_1}, \dotsc, \map {\operatorname{pred}} {\paren{x}_k}} & : x \in \operatorname{Seq} \land \map {\operatorname{len}} x = k \\ n & : \text{otherwise} \end{cases}$

That $f$ is primitive recursive follows from:


Suppose $y \in \Img g$.

Then, there exist $\tuple {x_1, \dotsc, x_k} \in \N^k$ such that:

$\map g {x_1, \dotsc, x_k} = y$

Let $X$ be the sequence coding for $\sequence {x_1 + 1, \dotsc, x_k + 1}$.

Then, $X \in \operatorname{Seq}$ and $\map {\operatorname{len}} X = k$.

Therefore, $\map f X = y$.

$\Box$


Now, suppose $y \in \Img f$.

Then, there exists $x \in \N$ such that:

$\map f x = y$

If $x \in \operatorname{Seq} \land \map {\operatorname{len}} x = k$ holds, then:

$y = \map g {\paren{x}_1 - 1, \dotsc, \paren{x}_k - 1}$

and thus $y \in \Img g$.

Otherwise, $y = n \in S$.

But as $S = \Img g$, it follows that $y \in \Img g$.

$\blacksquare$