Residue Field of P-adic Norm on Rationals/Lemma 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\norm {\,\cdot\,}_p$ be the $p$-adic norm on the rationals $\Q$ for some prime $p$.

Let $\Z_{\ideal p}$ be the induced valuation ring on $\struct {\Q, \norm {\,\cdot\,}_p}$.

Let $p \Z_{\ideal p}$ be the induced valuation ideal on $\struct {\Q, \norm {\,\cdot\,}_p}$.

Let $\phi : \Z \to \Z_{\ideal p} / p \Z_{\ideal p}$ be the mapping defined by:

$\forall a \in \Z: \map \phi a = a + p \Z_{\ideal p}$

Then:

$p \Z = \map \ker \phi$


Proof

Let $\map \ker \phi$ denote the kernel of $\phi$.

Then:

\(\ds a\) \(\in\) \(\ds \map \ker \phi\)
\(\ds \leadstoandfrom \ \ \) \(\ds \map \phi a\) \(=\) \(\ds p \Z_{\ideal p}\) Definition of Kernel of Ring Homomorphism
\(\ds \leadstoandfrom \ \ \) \(\ds a + p \Z_{\ideal p}\) \(=\) \(\ds p \Z_{\ideal p}\) Definition of $\phi$
\(\ds \leadstoandfrom \ \ \) \(\ds a = a - 0\) \(\in\) \(\ds p \Z_{\ideal p}\) Element in Right Coset iff Product with Inverse in Subgroup
\(\ds \leadstoandfrom \ \ \) \(\ds \exists a' \in \Z: \, \) \(\ds a = p a'\) \(=\) \(\ds p a'\)
\(\ds \leadstoandfrom \ \ \) \(\ds a\) \(\in\) \(\ds p \Z\)

Hence:

$p \Z = \map \ker \phi$

$\blacksquare$


Sources