Restriction of Restriction is Restriction

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\RR$ be a relation on $S \times T$.

Let $X \subseteq S$, $Y \subseteq T$.

Let $W \subseteq X$, $V \subseteq Y$.


Then:

$\paren{\RR {\restriction_{X \times Y} } } {\restriction_{W \times V} } = \RR {\restriction_{W \times V} }$


That is, the restriction of $\RR {\restriction_{X \times Y} }$ to $W \times V$ is the restriction of $\RR$ to $W \times V$


Proof

From Cartesian Product of Subsets:

$W \times V \subseteq X \times Y$

We have:

\(\ds \paren{\RR {\restriction_{X \times Y} } } {\restriction_{W \times V} }\) \(=\) \(\ds \RR {\restriction_{X \times Y} } \cap W \times V\) Definition of Restriction of Relation
\(\ds \) \(=\) \(\ds \paren {\RR \cap X \times Y} \cap W \times V\) Definition of Restriction of Relation
\(\ds \) \(=\) \(\ds \RR \cap \paren{X \times Y \cap W \times V}\) Intersection is Associative
\(\ds \) \(=\) \(\ds \RR \cap W \times V\) Intersection with Subset is Subset
\(\ds \) \(=\) \(\ds \RR {\restriction_{W \times V} }\) Definition of Restriction of Relation

$\blacksquare$