# Ring of Integers Modulo 2/Cayley Tables

Jump to navigation
Jump to search

This page has been identified as a candidate for refactoring of basic complexity.In particular: Transclude the separate tables for Addition and MultiplicationUntil this has been finished, please leave
`{{Refactor}}` in the code.
Because of the underlying complexity of the work needed, it is recommended that you do not embark on a refactoring task until you have become familiar with the structural nature of pages of $\mathsf{Pr} \infty \mathsf{fWiki}$.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Refactor}}` from the code. |

## Cayley Tables for Ring of Integers Modulo $2$

The Ring of Integers Modulo $2$:

- $\struct {\Z_2, +_2, \times_2}$

can be described completely by showing its Cayley tables:

- $\begin{array} {r|rr} \struct {\Z_2, +_2} & \eqclass 0 2 & \eqclass 1 2 \\ \hline \eqclass 0 2 & \eqclass 0 2 & \eqclass 1 2 \\ \eqclass 1 2 & \eqclass 1 2 & \eqclass 0 2 \\ \end{array} \qquad \begin{array}{r|rr} \struct {\Z_2, \times_2} & \eqclass 0 2 & \eqclass 1 2 \\ \hline \eqclass 0 2 & \eqclass 0 2 & \eqclass 0 2 \\ \eqclass 1 2 & \eqclass 0 2 & \eqclass 1 2 \\ \end{array}$

They can be presented more simply as:

- $\begin{array}{r|rr} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array} \qquad \begin{array}{r|rr} \times & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$

## Sources

- 1965: Seth Warner:
*Modern Algebra*... (previous) ... (next): Chapter $\text I$: Algebraic Structures: $\S 2$: Compositions: Exercise $2.1$ - 1965: Seth Warner:
*Modern Algebra*... (previous) ... (next): Chapter $\text I$: Algebraic Structures: $\S 6$: Isomorphisms of Algebraic Structures: Example $6.1$