Rising Factorial in terms of Falling Factorial of Negative

From ProofWiki
Jump to navigation Jump to search

Theorem

$x^{\overline k} = \paren {-1}^k \paren {-x}^{\underline k}$

where:

$x^{\underline k}$ is the $k$ to the $x$ falling
$x^{\overline k}$ is the $k$ to the $x$ rising.


Proof

\(\ds \paren {-x}^{\underline k}\) \(=\) \(\ds \prod_{j \mathop = 0}^{k - 1} \paren {-x - j}\) Definition of Falling Factorial
\(\ds \) \(=\) \(\ds \prod_{j \mathop = 0}^{k - 1} \paren {-1} \paren {x + j}\)
\(\ds \) \(=\) \(\ds \prod_{j \mathop = 0}^{k - 1} \paren {-1} \prod_{j \mathop = 0}^{k - 1} \paren {x + j}\) Product of Products
\(\ds \) \(=\) \(\ds \paren {-1}^k \prod_{j \mathop = 0}^{k - 1} \paren {x + j}\)
\(\ds \) \(=\) \(\ds \paren {-1}^k x^{\overline k}\) Definition of Rising Factorial
\(\ds \leadsto \ \ \) \(\ds \paren {-1}^k \paren {-x}^{\underline k}\) \(=\) \(\ds \paren {-1}^{2 k} x^{\overline k}\) multiplying both sides by $\paren {-1}^k$
\(\ds \) \(=\) \(\ds x^{\overline k}\) $-1$ to an even power is $1$

$\blacksquare$


Sources