Sine of Integer Multiple of Argument/Formulation 1/Lemma

From ProofWiki
Jump to navigation Jump to search

Theorem

For $n \in \Z$:
\(\ds \map \cos {n \theta} \map \sin {\theta}\) \(=\) \(\ds \map \sin {n \theta} \map \cos {\theta} - \map \sin {\paren {n - 1 } \theta}\)


Proof

\(\ds \map \cos {n \theta} \map \sin {\theta}\) \(=\) \(\ds \map \cos {n \theta} \map \sin {\theta}\)
\(\ds \) \(=\) \(\ds \paren {\map \sin {n \theta} \map \cos {\theta} - \map \sin {n \theta} \map \cos {\theta} } + \map \cos {n \theta} \map \sin {\theta}\) add zero
\(\ds \) \(=\) \(\ds \map \sin {n \theta} \map \cos {\theta} - \paren {\map \sin {n \theta} \map \cos {\theta} - \map \cos {n \theta} \map \sin {\theta} }\) regroup
\(\ds \) \(=\) \(\ds \map \sin {n \theta} \map \cos {\theta} - \map \sin {n \theta - \theta}\) Sine of Difference
\(\ds \) \(=\) \(\ds \map \sin {n \theta} \map \cos {\theta} - \map \sin {\paren {n - 1} \theta}\) simplification

$\blacksquare$